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Proper-time expansion of the one-loop effective Lagrangian in 
powers of derivatives 

Josef A Zuk 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, 
UK 

Received 22 November 1984 

Abstract. It is shown that the proper-time method can be adapted to make the calculation 
of higher derivative terms in the one-loop effective Lagrangian easy. 

1. Introduction 

The background field method (DeWitt 1965, 1975, Honerkamp 1972, Abbott 1981, 
Vilkovisky 1984) provides a convenient formalism for studying the loop expansion of 
the Green functions and the effective action, I', of quantum field theory. In particular, 
it allows direct coordinate space calculations to be done, and hence is suitable for 
deriving an expansion of the one-loop effective action, r"), in powers of derivatives 
of the fields. 

Such a calculation is made possible by using a representation of the one-loop 
effective action in terms of Schwinger's proper-time Green function (Schwinger 1951) 
expanded as an asymptotic series in the proper-time parameter, valid for small space- 
time separation and related to the usual WKB form of DeWitt (DeWitt 1965, 1975). 
The ultraviolet regularisation of the theory is achieved by dimensional continuation, 
introduced in this context by Brown (1977). Zeta function regularisation (Birrell and 
Davies 1982) would be equally appropriate here. 

Although the proper-time method has been employed extensively (Bunch 1979, 
Lee 1982) to find renormalisation counter-terms, especially in curved spacetime, it 
seems that it has only been used to extract formal expressions for the effective action 
and no explicit evaluations are in evidence in the literature. 

In this paper we consider the case of a self-interacting scalar field, for which we 
compute the one-loop effective Lagrangian up to fourth order in powers of derivatives 
of the field. Even though our results will be true more generally, we shall illustrate 
the procedure on the 94 model for definiteness, and in order to compare with the 
expression recently obtained by Fraser (Fraser 1984, Aitchison and Fraser 1984) where 
an abstract operator expansion was used. As we shall see, one of the main advantages 
of the present method is that several 'short-cuts' are available which greatly simplify 
the calculation in comparison with other approaches. In fact, the principal motivation 
for this work was the simplicity that the method affords which may be of especial 
value in the treatment of more complicated field theories such as the nonlinear (+ model. 
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2. Review 

Let S ( 4 )  denote the classical action for a one-component scalar field theory. Then, 
in the background field method, the (bare) effective action, r (d) ,  is given to be the 
solution of the equation (Vilkovisky 1984) 

from which the effective Lagrangian, Leff, is defined by 

r(4) = dxLeff.  I 
In the one-loop approximation 

Setting h = 1 ,  we have for the 44 model, which has classical Lagrangian 

L,, = $ap4 a+& - t m 2 4 2  - ( A/4!)44, (4) 

the one-loop contribution to I-( +), 

r(”(4) =$iTrln(a2+m2+$A4’) 

= i ih1det (d~+m’+$A4~) .  ( 5 )  
For future reference we define the following quahtities: 

We begin by reviewing the standard Schwinger-DeWitt derivation of r (”(4)  as a series 
in inverse powers of the mass squared, m2.  

To give precise meaning to the formal expression ( 5 )  we introduce the proper-time 
representation. With spacetime dimension extended to n, it is well known that (Lee 
1982) 

lndet(d2+m2+ihQ.- ir )=- /oE$exp(-sc)  I d”x(x, SIX) 

where (x, s ly )  denotes the proper-time Green function (Schwinger 1951): 

(x, sly) =(x(exp[-is(d2+ m2+fA42)]ly). (9) 
We have ensured Feynmann boundary conditions by giving the mass parameter, m, 
an infinitesimal negative imaginary part, - iE.  This renders the operator d 2 +  m 2 + f A 4 2  
non-singular so that its inverse is well defined. The central idea behind all this is that 
(x, s ly )  satisfies the ‘Schrodinger equation’: 
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with boundary condition 

lim (x, sly> = (xly) = 6'"'(x - y). 
S-0' 

Now, in calculating L$', we are interested in the short distance behaviour of the Green 
function (x, sly); hence, it suffices to express it in the WKB form (DeWitt 1975) 

Accordingly, 

1 33 i d s  
~ 1 ~ ) = 2 ( 4 ~ ) n : 2  J: ol+n/2 exp(-ss) exp(-im2s)F(x, x ;  is ;  n). (13) 

Convergence at the upper limit of the s integration is guaranteed by the - i E  prescription, 
but L$' diverges at the lower end at which s = 0. If we allow n to be continued 
analytically throughout the complex plane, then this divergence will appear as a pole 
singularity as n approaches the relevant physical spacetime dimension; in our case, 
four. To display this, we expand F ( x ,  y : is ;  n )  in a power series about s = 0, 

02 

F ( x ,  y ;  is ;  n )  = ak(X, y)(is)k 
k = O  

where the ak(x,  y) are supposed well behaved in the neighbourhood x = y. After 
substituting equation (14) into equation (13) we evaluate the s integral by rotating the 
contour into the negative imaginary axis, which is equivalent to the change of variable 
s = 4. r .  In other words, using the formula 

loE i ds  exp(-s&)(is)k-' exp(-im2s) = lo= dTTk-' exp(-m2.r) = r (k ) /m2k  (15) 

we find (Bunch 1979, Birrell and Davies 1982) 

where we have introduced an auxiliary mass parameter, p, in order to keep the 
dimension of L$' fixed as (length)-4 for arbitrary spacetime dimension, n. 

It is clear that if n = 4, there are r-function poles in the terms corresponding to 
k = 0, 1 and 2. Making the following expansions: 

m 2  
( f ) n - 4  = l+&(n-4 )  ln,+O((n-4)2) 

P 

L 
r(2-n/2)=-- y+O((n-4) )  4-n 

where y is the Euler constant, we can decompose L$ into divergent and finite parts 
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according to 
L:;) = ~ ( 1 )  + ~ ( 1 )  + ~ ( 1 )  

div fc ren 

where the pole term 

is removed by introducing appropriate renormalisation counter-terms, and in the limit 
n + 4 the finite counter-term, L!:’, and the renormalised effective Lagrangian, Llil, are 
given by 

The value of the auxiliary mass parameter, p, is arbitrary and any change in it is 
precisely compensated by a change in the renormalisation counter-terms. 

3. The coefficient functions 

Next, we outline the strategy for determining the ak. Inserting equation (12) into the 
‘Schrodinger equation’ (10) we find (Lee 1982) 

(22) a’,+ V ( x ) + p a x  ( X - Y ) ,  , 
1s 

a 
a(is) 

-- 

which in turn leads to a recursive system of differential equations for the coefficient 
functions ak(X, y ) ,  

(23a) 

(23b) 

- ( x  - y)papao = 0 

- kak = ( X  - y)’d,Uk + (a2+ V)ak-l 

for k = 1,2,  . . . . We recall that V ( x )  = +Ad2(x). From the boundary condition 
a,(x, x )  = 1 it follows immediately that ao(x, y )  = 1. 

Only the coincidence limits of the ak are relevant to us. These can be obtained as 
local functions of the field 4 by successive differentiations of the recurrence equations 
(23). Let us define 

where the derivatives are all taken with respect to the variable x. Successive application 
of Leibnitz’ rule to equations (23) yields the set of relations 

1 
k +  N a,,a,, , . . a,,iik = -- a,,a,, . . . a,, ( a 2 +  V)dk-l (26) 
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for k = 1,2,, . , and N = 0, 1 , 2 , .  . , . By repeated use of the above relations and the 
fact that ao(x, y )  = 1, explicit solutions for the dk may be obtained. As an example we 
compute d2:  

(j 2 -  - - - (  ; a  2 +V)dl 

-- - a2(a2+ v)ao+fv(a2+ V)d0 
3 x 2  

= :a2 v + v2. 
It should now be apparent that the series (16) is not suitable for extracting an 

expansion in powers of derivatives because any given order in the derivatives appears 
in an infinite number of the terms dk .  To remedy this, we make the important observation 
that L$) should depend only on M 2  and its derivatives. This suggests that an expansion 
in inverse powers of M2 rather than m 2  is called for. 

4. Expansion in powers of derivatives 

In view of the preceding discussion, we rewrite LLk) in the form 

The boundary condition at s = 0 is still $(x, x ;  0; n) = 1. Following the same reasoning 
as in 9 2 we find that the pole part, LiL, of L$’ and its finite contributions, namely 
L::) and I,!::, are now given by 

and 

+ d2) 1 ( 4M4do 2M2d,  
( 4 ~ ) ” ’ ~ ( n - 4 )  n(n-2)  n - 2  

LYit = - 

In M ’ ( ~ M ~ : ~ -  ~ ’ d ,  + d,) L;;; = -- 
a4711 

2 ( 4 ~ ) ~ ( M ’  M 4  M6 M8 

1 

1 1 . 4  1 . 4  2 *  6 . 4  +- -5 +--d +--d +--d + . . .  

Now, although one may derive a set of recursion relations for the new coefficient 
functions 6 k  in a manner analogous to that for the original ak, they turn out to be very 
complicated and indeed intractable. A more profitable approach is to realise that 

(32) R(x, y ;  is ;  n) =exp(iV(x))F(x,  y ;  is; n )  

leading to the following expression for the ak in terms of the a*k which satisfy a simple 
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system of equations: 

The first three coincidence limits are easily found to be 
A 

do= 1 

6,=0 

ci*,=ba2v. 

A 

Before proceeding further we note that Lit; has not been altered by the resummation, 
i.e. 

;M4&- M2rS*, + (7*, = fm4do- m’d, + 6, 
= i ( m 2 +  v)2+ba2v. (35) 

This means that no problems arise in finding renormalisation counter-terms to absorb 
the singularity. 

To facilitate ease of calculation of the higher coefficient functions we shall develop 
a few ‘short-cut’ rules; but first we need to explain some ‘book-keeping’. Let us assign 
a ‘weight’ w = +1 and a ‘dimension’ d = -1 to each ‘ V ’ ,  and w = + 1 ,  d = + 1  to each 
derivative pair ‘a, d p ’  which appear in the terms arising from the reduction of the 
coincidence limits c i k  by applying equations (26 ) .  Clearly, the coefficient function dk 
is composed of terms, made up of V and a, each of which has total ‘weight’ w = k and 
whose total ‘dimensions’ range from a minimum d = - w to a maximum d = w - 2 ,  i.e. 

~ ( 6 ~ )  = k d m i n ( 2 k )  = --w d,,,( n k )  = W - 2 .  (36) 

Thus we may also assign weights and dimensions to ‘composite’ terms, for example 
a,Vapa2( Vii,), which has w = 6, d,,, = -2 and d,,, = 0. Now, the number of derivative 
pairs appearing in a term is given by 

(37) 

(38) 

# d2 = f( w + d )  

# 8 i , n (  n k )  = 0 

from which it follows that 

# d ; a x ( c i k )  = k - 1 .  

However, the situation is improved if we consider the iik. It is not difficult to convince 
oneself that 

# d ; , , ( & )  = min{x E N: x 3 k/3} for k = 2 , 3 , .  . . 
with 

# a;,”( lo) = # a;,,( &)  = 0 

# d k a , ( c r * k )  = k - 1 

(39) 

and 

for k = 1 , 2 , .  . . . (40) 

Conseguently, contributions to the terms in L:;: quadratic in teriyatives ?rise solely 
from 6, and a,, while the quartic contributions come from ci,, ii4, ii5 and ci6. We also 
note that 

A 

W (  i i k )  = k d , , , ( a k ) = k - 2  d,,,(rf*,) = 2 # a i l n (  &) - k. (41) 
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We now proceedAto state the ‘short-cut’ rules. In the process of applying equations 
(26) to evaluate 6k: 

( i )  discard any terms which appear withAmore derivatives than the desired order: 
(ii) discard any terms with dmax<dmin(6k) since these must all cancel out in the 

end; and finally, 
(iii) since Lik’ depends only on W(x) = m 2 +  V(x) and its derivatives, all terms in 

which V appears undifferentiated must eventually cancel out because the recurrence 
equations do not involve the mass, m, nor does the expansion (31) explicitly. Thes: 
can be discarded immediately. (We note, in particular, that the expression for 6k 
emerges entirely from the reduction of dk. )  

5. Results 

We obtain the following results which we write out up to terms quartic in the derivaiives. 
(For the purpose of illustration, calculation of the most complicated case, 6 6 ,  is 
presented in the appendix.) 

do= 1 6, = o  l2 = ;a2 w (4% b, c)  

( 4 2 4  

A 

i3= -ha,wapw-1 6 0 a a  2 2 

a ‘4-72a -1 2 wa2w+~a ,wa~a2w+~a ,a .wa~auw+ . . . ( 4 2 4  

Recall that W 
by some integration by parts leads to our final expression for L.:::: 

M 2 .  Insertion ofthese coefficient functions into equation (31) followed 

1 a,Wapw = - ( - 1 W 2 l n  w+- 
2 ( 4 ~ ) ~  2 12 w 

) +o(a6). (43) 
1 a2wa2w 1 a,wa,wapavw -- 7 (a,wapw)2 

f- +- 
120 w 2  45 w3 240 W4 

It is now a straightforward task to compare with the result obtained by Fraser 
(1984) for the d4 model. Making the replacement W = m 2 + $ i 4 2  and performing some 
further integrations by parts we obtain 

a, wap w 42a,4aw4 
W (m2+iAc$2) 

(a,  wap w)’ 44(a,4ap4)2 

(a,4agd2 42(n4)2 
2 , + A 2  

= A 2  (44a) 

(446) = A 4  w4 
2 - A 2  a2 wa2 w 

W 2  ( m 2 + f h &  ) ( m 2 + f A 4 * ) ’  

( rn2 (44c) 

(44d) 

-4A2 4 a , & ~ 4 a ” a ~ 4 + ~ ~ ~  42(a,+ag+)2 

a,wa,wa”a”w = A 3  43a,4a,,rbapa”4+ A342(a,4afi4)2 
( m2 + fA4’)’ 

w3 ( m 2 + 4 A 4 2 ) 3  ( m 2 + f A 4 ’ ) ’  
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where the symbol ‘ -- ’ denotes equality up to a total derivative. We deduce that the 
contributions to the one-loop effective Lagrangian for 44 theory, quadratic and quartic 
in derivatives of 4 are given respectively by 

and 

1 2014’ 7 A 2 4 4  
-1 + A 2  

2 ( 4 ~ ) ~  120(m2+$h42)2  [ ( 3(m2+$h42)-2(m2+fAr$ 

in agreement with Fraser. In conclusion, we mention that our result is applicable to 
any renormalisable self-interacting scalar field theory with a positive, one component 
Hessian, W = -a2L/a4a4, where L( 4, a4) is the classical Lagrangian. 

6. Epilogue: an alternative viewpoint 

Suppose we want to evaluate the effective Lagrangian at a particular spacetime point, 
xo. Then let us define 

(47a) +( x )  3 W( x )  - W( xo) 

and let us denote 

WO- W(x,). 

An expression for L::!, appropriate to this splitting may be obtained by making the 
replacement m 2 +  WO in equation (16), whence we can take 

-In W , ( ~ W $ ~ -  

The recursion relations for the corresponding coefficient functions, &, are then given 
by equations (23a) and (23b)  if we replace V(x) by *(x), i.e. 

a’k = a k [  ct]. (49) 

But since @(xo) =0 ,  the coincidence limits at x = x o ,  ik(Xo), depend only on the 
derivatives of W and hence will automatically generate the required expansion. Also, 
since a, W = d, and similarly for higher derivatives, 

~ k ( x ~ ) = ~ ~ [ ~ ( x O ) = ~ k [ ~ ( x O ) .  (50)  

Consequently, the computation proceeds in a manner essentially identical to the 
previous one; only our point of view has changed. In fact, this version may be regarded 
as a special case of the preceding discussion. Finally, having calculated L::A(xo) from 
equation (48), we recall that the point xo was chosen arbitrarily. As before, we obtain 
expression (43). 
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Appendix 

Now 

a2a2( vc,) + a2a2~a3+4a,a2va~~,+2a2va2a,+4a,a.~a~awa3+~a,~a~a2~, 

+ -a,a2vaP( VG,) -$a2va2( ~ 6 , )  -za,a,vaPaY( V G ~ )  -ja,VaFa2( VG,) 

+ -?a2 va,va”~, -$,a,vePva”6, -fa,vaWa2( vd,) 

+ - fa ,  vawa2( va,) 

and 

Hence 

& =  (&+: &+: 3 &)(a,vaFv)2+ . . . 
=&(av),+ . . . . 

One should note that the &term corresponds, in perturbation theory, to the box graph 
(figure A l ) .  
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Figure A I .  
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